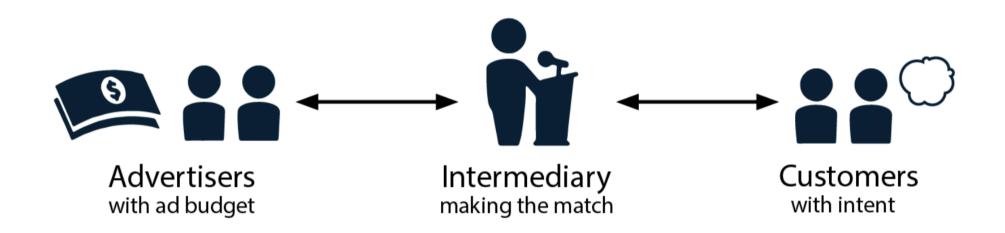
Large Scale Machine Learning in Digital Advertising

Seyed Abbas Hosseini VP of AI, Tapsell Inc. Assistant Professor, SUT abbas@tapsell.ir

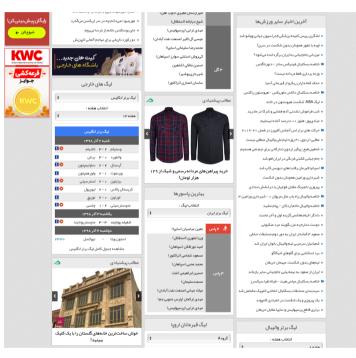


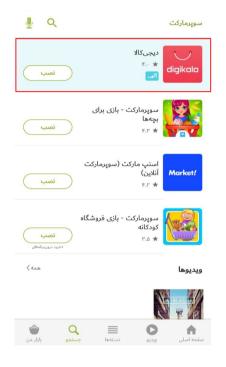
Outline

- Digital Advertising
 - Digital Advertising Ecosystem
 - Real Time Bidding
- CVR Estimation Problem
 - Problem Definition
 - Predictive Models
 - Production Challenges
- Tapsell Brain

Advertising

Conveying the message of the advertiser to the target audience

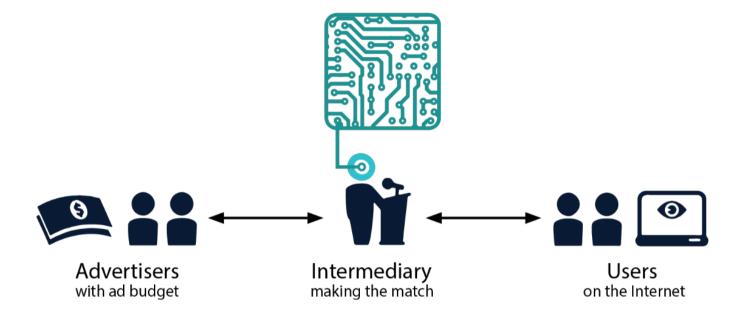

Traditional Advertising



"Half the money I spend on advertising is wasted; the trouble is I don't know which half."

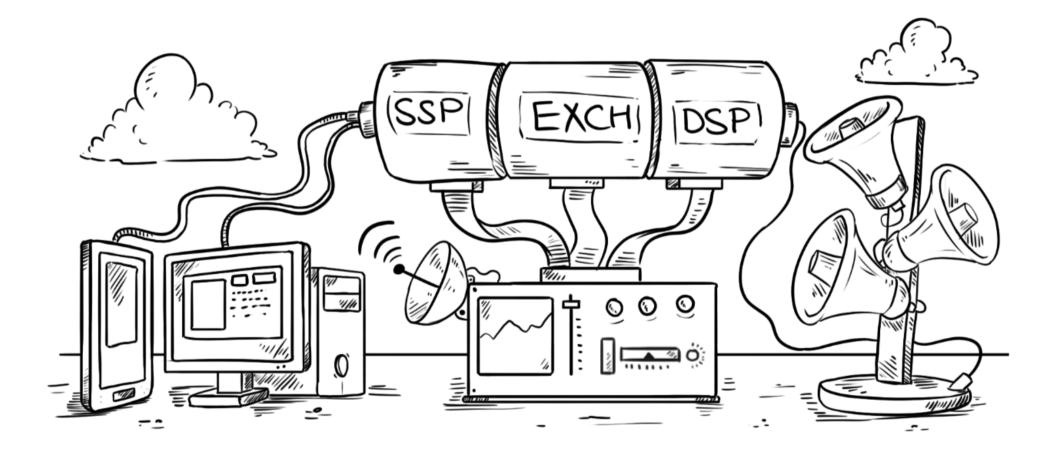
- John Wanamaker (1838-1922) Father of modern advertising and a pioneer in marketing

Digital Advertising

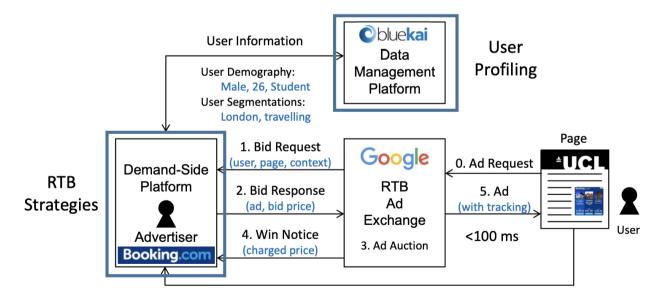


Sponsored Search

Display Advertising

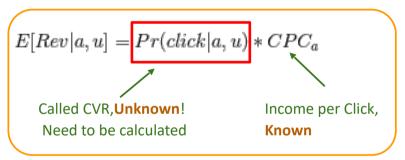

Digital Advertising can be measured precisely

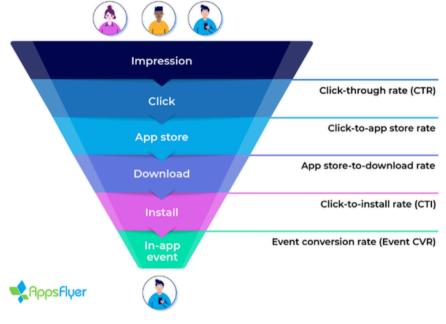
Digital Advertising


Make the best match between the <u>advertisers</u> and <u>internet users</u> with <u>economic constraints</u>

Digital Advertising Ecosystem

Real Time Bidding

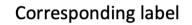

- RTB is a mechanism for <u>evaluating</u>, <u>buying</u> and <u>selling</u> every online ad view <u>individually</u> and <u>instantaneously</u>.
- Using RTB,
 - advertisers can spend money to impress specific users in specific contexts
 - publishers can sell their traffic to highest offered price

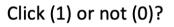


6. User Feedback (click, conversion)

Real Time Bidding

- Advertisers have different goals with different Pricing Schemas
 - CPM: cost per mille impression [favored by publisher]
 - CPC: cost per click
 - CPA: cost per action [favored by advertiser]
- Bidder have to predict the value of each impression for each ad:

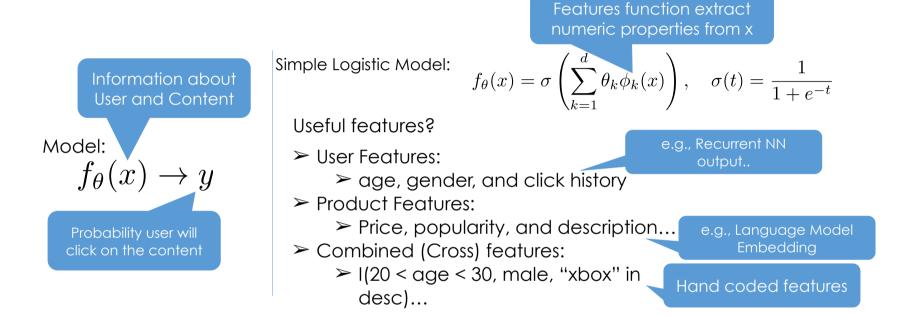



- Bidder have to estimate CVR using available data in real time:
 - User
 - Context
 - Ad

CVR Estimation: Problem Definition

• Problem Definition

- One instance data
 Date: 20160320
 Hour: 14
- Weekday: 7
- IP: 119.163.222.*
- Region: England
- City: London
- Country: UK
- Search Query: "iphone 6s case"
- OS: Windows
- Browser: Chrome
- Ad title: "iphone 6s case on sale!"
- Ad content: "Customize your case design"
- Bid keywords: "iphone case"
- User occupation: Student
- User tags: Sports



Predicted CTR (0.15)

- Challenges:
 - High Dimensional Data (order of millions of features)
 - Too Sparse Feature Vectors
 - Very Imbalanced Classification [The convert events are too rare]

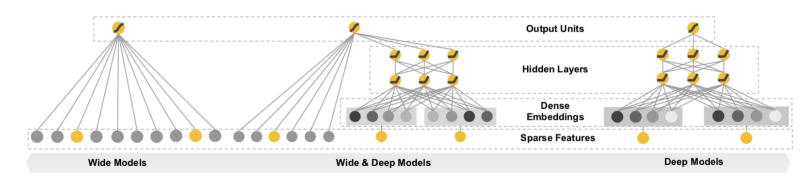
CVR Estimation: Sample Solution

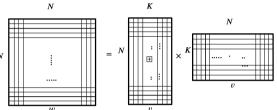
• Pros

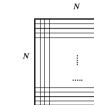
- Fast Prediction: only one inner Product should be calculated
- Fast Learning Methods: efficient online algorithms
- Interpretable
- Cons
 - Linear models don't consider correlation among features
 - Linear models can only memorize feature combinations with label

CVR Estimation: Predictive Models

- **Factorization Machines**
 - **Fast Prediction**
 - **Consider Features correlation** •
 - Learning the parameters is expensive and can't be done online
 - **Over-generalization** ٠
- **Deep models**

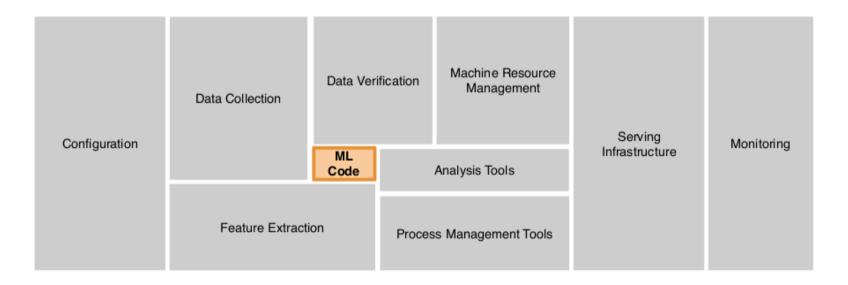

 $P(Y = 1 | \mathbf{x}) = \sigma(\mathbf{w}_{wide}^{T}[\mathbf{x}, \phi(\mathbf{x})] + \mathbf{w}_{deep}^{T} a^{(l_f)} + b)$


 $p(y \mid x, w) = f(\phi(x, w))$


 $i, i \in F$

 $\phi(x,w) = \sum w_{ij} x_i x_j$

- Good generalization and memorization
- Learning deep models is computationally expensive
- Time consuming prediction method •
 - Deep features need to be calculated in prediction time
 - Can't be scaled to RTB size but can be used in sponsored search



CVR Estimation Challenges in Production

Data Collection	Training	Inference
 Processing a huge amount of noisy feedback Data validation and verification Preparing collected data for prediction instantly 	 Data Drift and concept drift continuous training feedback loop in training data Multi-Arm Bandit Delayed Feedback for actions 	 Real-time response [<100ms] High Throughput [>1B Daily imps] Bursty Traffic monitoring, alerting and Auto-Scaling

CVR Estimation System

Adopted from Sculley, David, et al. "Hidden technical debt in machine learning systems." Advances in neural information processing systems 28 (2015).

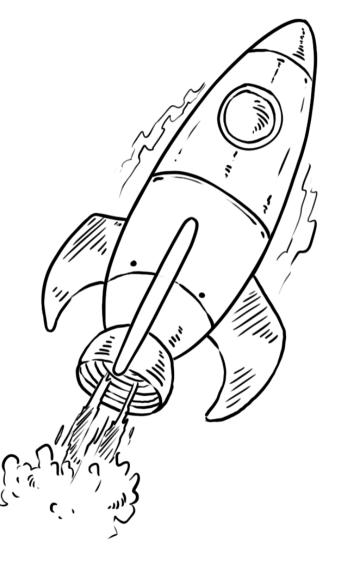
Tapsell Brain 1st Generation

• Business state:

- 500K daily impression
- Video advertising SDK with 50 Publishers
- CPM and CPC campaigns

Technical State:

- Centralized system to answer the requests
- Estimating CTRs using a simple Bayesian Bernoulli Model
- Visualizing the historical data and improve algorithm incrementally
- Cons:
 - Not scalable
 - Large error in CTR estimates
- Pros:
 - Best Performance based advertising platform in its own time



Tapsell Brain 2nd Generation

- Business state:
 - 1M+ daily impression
 - 150+ Publishers
 - CPI Campaign

Technical State:

- Adding multi-level cache to response more requests (still centralized)
- Estimating CVRs in lower granularity
- Adding time effect to the CVR estimation model
- Using feedback data to improve CVR estimations
- Cons:
 - Not scalable
 - Large error in CVR estimation for post-click actions
- Pros:
 - The Only CPI based advertising platform in its own time

Tapsell Brain 3rd Generation

- Business state:
 - 100M+ daily impression
 - 500+ Publishers
 - CPI, CPA Campaign

Technical State:

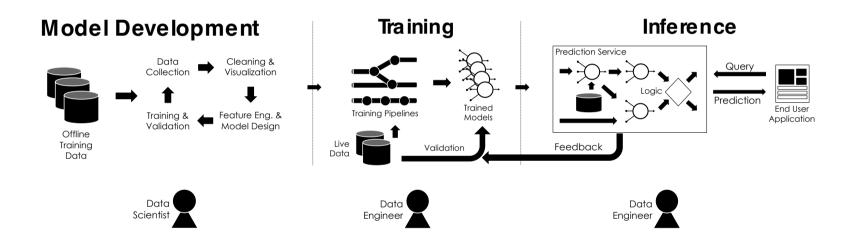
- Making the model horizontally scalable in all levels
 - Changing the servers' OS to DCOS
 - Switching to distributed programming platforms (Apache Spark)
 - Switching to distributed Databases (Cassandra, ...)
 - Dockerizing all modules
- Making the CVR estimation model much more efficient by considering all users' history $\sqrt{2}$
- Pros:
 - The system is completely scalable and there exist no technical limitation to get the market

11/10

Best Performance based advertising platform in Iran

Tapsell Brain 4th Generation

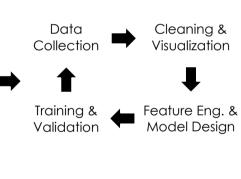
• Business state:


- 1B+ daily impression
- 20% improvement in ECPM
- 5000+ Direct Publishers
- More than 10x traffic in comparison to 3rd generation

Technical State:

- Model Development automation
- Training complex models continuously
- Scalable serving prediction of complex models
- Pros:
 - Be able to improve system by develop, train and serve new models easily

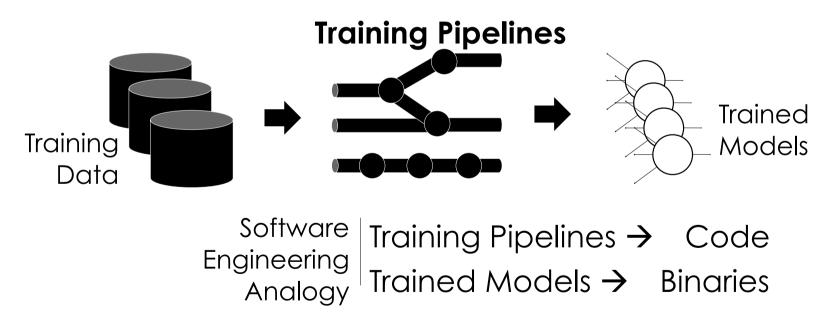
Current Structure & Architecture



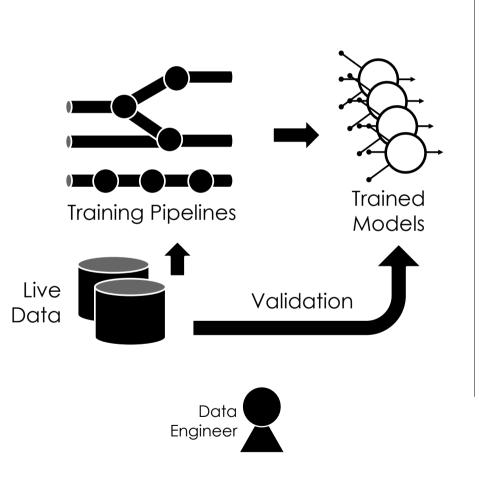
Adopted from gonzalez. "AI for Systems and Systems for AI." Berkeley (2019).

Model Development

Model Development

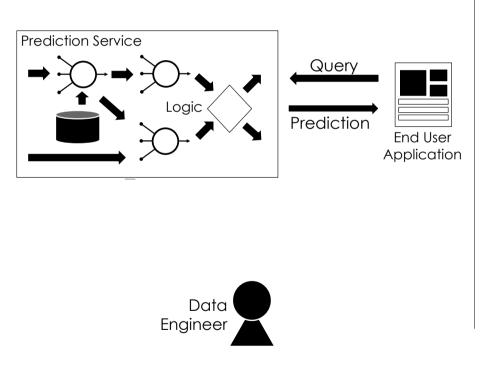


- Identifying potential sources of data
- Joining data from multiple sources
- Addressing missing values and outliers
- Data Centric Model Design
- Offline Model Evaluation
 - Designing metrics by considering the bandit feedback
 - Fine-tune hyper-parameters by doing extensive experiments
- Output of model development team are:
 - Dashboards and notebooks (insight)
 - training pipelines


Training Pipeline

Training Pipelines Capture the **Code** and **Data Dependencies**

 \succ Description of how to train the model from data sources



Training

- Training models **at scale** on **live data**
- Retraining on new data
- Automatically **validate** prediction accuracy
- Manage model versioning
- Online model evaluation
 - Designing fair A/B tests

Prediction Serving

Goal: make predictions in ~50ms under <u>bursty</u> load

Complicated by Deep Neural Networks

Two Approaches

- > **Offline:** Pre-Materialize Predictions
- > **Online:** Compute Predictions on the fly

Current Challenges

- Model Improvement
 - We still have a far way to be optimized in CVR estimation
 - Bid estimation in competition to other DSPs is still a new challenge for us
- Model Development and Training Automation
 - Handling huge amount of available features (Feature Store)
 - Distributed training of models (Kubeflow)
 - Train and Serving of Deep Models (TFX)
 - Experiment tracking (ML flow)

How to Join Us

- Research Topic for M.Sc. and Ph.D. students
 - Computational Advertising is a hot topic in top conferences such as KDD, WSDM, WWW, ...
 - Real world problems
 - Real Datasets
 - Baseline Methods that can be used to develop more advanced ones
- Apply for full time or part time job by
 - Send your resume to jobs@tapsell.ir
 - Fill the form at jobs.tapsell.ir

Thank You!